图片质量评估论文 | 无监督SER-FIQ | CVPR2020

Spring Security OAuth2.0认证授权五:用户信息扩展到jwt

文章转自:同作者微信公主号【机器学习炼丹术】。欢迎交流,共同进步。

  • 论文名称:SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness
  • 论文链接:https://arxiv.org/abs/2003.09373

0 综述


这可能是我看CVPR论文中,唯一一个5分钟就看完原理的论文了,简单有趣。这一篇文章是CVPR2020的与图像质量评估相关的文章,整体思想比较新颖,而且是无监督的方式,感觉构思不错,我要好好读读这一篇。

1 细节

人脸质量评估的目的是评估一个人脸图片与面部识别算法的适用性,什么是高质量的人脸图片?不是看的清晰的,而是可以正确被面部识别算法识别的。

基于这种思想,计算人脸识别算法的随机子网络的输出的方差,得到图片的鲁棒性,从而反应图片的质量,如下图:

上图中的随机子网络,其实就是dropout实现的全连接层,所以要求人脸识别模型中必须包含dropout层。

作者对于每个图片,随机构建了m个随机子网络,然后对m个输出计算方差。我们用数学来表示这m个随机子网络的输出:

使用SpringBoot搭建Web项目

\(X(I)=\{x_s\}, s \in {1,2,…,m}\)

其中I表示原始图像,m为随机子网络的数量,\(s_m\)表示第m个随机子网络,输入I的时候的输出。

那么我们用下面的公式来计算图像I的quality score:

这样质量分数是在0和1之间的一个数字。


这个流程图也很简单,跟我们刚才说的一样。

2 总结


上图是一个实验结果图,不同模型的之间的对比。论文后面用大量篇幅在各种人面识别模型和数据集上做实验和对比,这里就不多描述了。回头有机会,这个方法可以试一试,简单又有意思。

用户画像分析与场景应用

给TA买糖
共{{data.count}}人
人已赞赏
经验教程

Dubbo+Zookeeper(二)Dubbo架构

2021-1-14 22:46:00

经验教程

Spring Security OAuth2.0认证授权五:用户信息扩展到jwt

2021-1-14 23:16:00

⚠️
免责声明:根据《计算机软件保护条例》第十七条规定“为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬。”您需知晓本站所有内容资源均来源于网络,仅供用户交流学习与研究使用,版权归属原版权方所有,版权争议与本站无关,用户本人下载后不能用作商业或非法用途,需在24个小时之内从您的电脑中彻底删除上述内容,否则后果均由用户承担责任;如果您访问和下载此文件,表示您同意只将此文件用于参考、学习而非其他用途,否则一切后果请您自行承担,如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。 本站为个人博客非盈利性站点,所有软件信息均来自网络,所有资源仅供学习参考研究目的,并不贩卖软件,不存在任何商业目的及用途,网站会员捐赠是您喜欢本站而产生的赞助支持行为,仅为维持服务器的开支与维护,全凭自愿无任何强求。本站部份代码及教程来源于互联网,仅供网友学习交流,若您喜欢本文可附上原文链接随意转载。
无意侵害您的权益,请发送邮件至 momeis6@qq.com 或点击右侧 私信:momeis 反馈,我们将尽快处理。
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
有新私信 私信列表
搜索