Nebula Exchange 工具 Hive 数据导入的踩坑之旅

Linux LVM Logical Volume Management 逻辑卷的管理

摘要:本文由社区用户 xrfinbj 贡献,主要介绍 Exchange 工具从 Hive 数仓导入数据到 Nebula Graph 的流程及相关的注意事项。

1 背景

公司内部有使用图数据库的场景,内部通过技术选型确定了 Nebula Graph 图数据库,还需要验证 Nebula Graph 数据库在实际业务场景下的查询性能。所以急迫的需要导入数据到 Nebula Graph 并验证。在这个过程中发现通过 Exchange 工具从 hive 数仓导入数据到 Nebula Graph 文档不是很全,所以把这个流程中踩到的坑记录下来,回馈社区,避免后人走弯路。

本文主要基于我之前发在论坛的 2 篇帖子:

2 环境信息

  • Nebula Graph 版本:nebula:nightly
  • 部署方式(分布式 / 单机 / Docker / DBaaS):Mac 电脑 Docker 部署
  • 硬件信息
    • 磁盘(SSD / HDD):Mac 电脑 SSD
    • CPU、内存信息:16 G
  • 数仓环境(Mac 电脑搭建的本地数仓):
    • Hive 3.1.2
    • Hadoop 3.2.1
  • Exchange 工具:https://github.com/vesoft-inc/nebula-java/tree/v1.0/tools/exchange

编译后生成 jar 包

  • Spark
    spark-2.4.7-bin-hadoop2.7 (conf 目录下配置 Hadoop 3.2.1 对应的 core-site.xml,hdfs-site.xml,hive-site.xml 设置 spark-env.sh)
    Scala code runner version 2.13.3 — Copyright 2002-2020, LAMP/EPFL and Lightbend, Inc.

3 配置

1 Nebula Graph DDL

CREATE SPACE test_hive(partition_num=10, replica_factor=1); --创建图空间,本示例中假设只需要一个副本
USE test_hive; --选择图空间 test
CREATE TAG tagA(idInt int, idString string, tboolean bool, tdouble double); -- 创建标签 tagA
CREATE TAG tagB(idInt int, idString string, tboolean bool, tdouble double); -- 创建标签 tagB
CREATE EDGE edgeAB(idInt int, idString string, tboolean bool, tdouble double); -- 创建边类型 edgeAB

2 Hive DDL

CREATE TABLE `tagA`(                               
   `id` bigint,                                     
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into tagA select 1,1,'str1',true,11.11;
insert into tagA select 2,2,"str2",false,22.22;

CREATE TABLE `tagB`(                               
   `id` bigint,                                     
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into tagB select 3,3,"str 3",true,33.33;
insert into tagB select 4,4,"str 4",false,44.44;

CREATE TABLE `edgeAB`(                               
   `id_source` bigint,                                     
   `id_dst` bigint,         
   `idInt` int,                            
   `idString` string,                                 
   `tboolean` boolean,                                 
   `tdouble` double) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' LINES TERMINATED BY '\n';
insert into edgeAB select 1,3,5,"edge 1",true,55.55;
insert into edgeAB select 2,4,6,"edge 2",false,66.66;

3 我的最新 nebula_application.conf 文件

注意看exec、fields、nebula.fields、vertex、source、target字段映射

{
  # Spark relation config
  spark: {
    app: {
      name: Spark Writer
    }

    driver: {
      cores: 1
      maxResultSize: 1G
    }

    cores {
      max: 4
    }
  }

  # Nebula Graph relation config
  nebula: {
    address:{
      graph: ["192.168.1.110:3699"]
      meta: ["192.168.1.110:45500"]
    }
    user: user
    pswd: password
    space: test_hive

    connection {
      timeout: 3000
      retry: 3
    }

    execution {
      retry: 3
    }

    error: {
      max: 32
      output: /tmp/error
    }
    rate: {
      limit: 1024
      timeout: 1000
    }
  }

  # Processing tags
  tags: [
    # Loading from Hive
    {
      name: tagA
      type: {
        source: hive
        sink: client
      }
      exec: "select id,idint,idstring,tboolean,tdouble from nebula.taga"
      fields: [id,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      vertex: id
      batch: 256
      partition: 10
    }
    {
      name: tagB
      type: {
        source: hive
        sink: client
      }
      exec: "select id,idint,idstring,tboolean,tdouble from nebula.tagb"
      fields: [id,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      vertex: id
      batch: 256
      partition: 10
    }
  ]

  # Processing edges
  edges: [
    # Loading from Hive
    {
      name: edgeAB
      type: {
        source: hive
        sink: client
      }
      exec: "select id_source,id_dst,idint,idstring,tboolean,tdouble from nebula.edgeab"
      fields: [id_source,idstring,tboolean,tdouble]
      nebula.fields: [idInt,idString,tboolean,tdouble]
      source: id_source
      target: id_dst
      batch: 256
      partition: 10
    }
  ]
}

4 执行导入

4.1 确保 nebula 服务启动

4.2 确保 Hive 表和数据就绪

4.3 执行 spark-sql cli 查看 Hive 表以及数据是否正常以确保 Spark 环境没问题

4.4 一切配置工作就绪后,执行 Spark 命令:

spark-submit --class com.vesoft.nebula.tools.importer.Exchange --master “local[4]” /xxx/exchange-1.0.1.jar -c /xxx/nebula_application.conf -h

4.5 导入成功后 可以借助 db_dump 工具查看导入数据量 验证正确性

./db_dump --mode=stat --space=xxx --db_path=/home/xxx/data/storage0/nebula   --limit 20000000

5 踩坑以及说明

  • 第一个坑就是 spark-submit 命令没有加 -h 参数
  • Nebula Graph 中 tagName 是大小写敏感的,tags 的配置中 name 配置的应该是 Nebula Graph 的 tag 名
  • Hive的 int 和 Nebula Graph 的 int 不一致,Hive 里面的 bigint 对应 Nebula Graph 的 int

其他说明:

  • 由于 Nebula Graph 底层存储是 kv,重复插入其实是覆盖,update 操作用 insert 替代性能会高些
  • 文档里面不全的地方可能暂时只有一边看源码解决,一边去论坛问(开发同学也不容易又要紧张的开发又要回答用户的疑问)
  • 导入数据、Compact 以及操作建议:https://docs.nebula-graph.com.cn/manual-CN/3.build-develop-and-administration/5.storage-service-administration/compact/
  • 我已经验证如下两个场景:
    • 用 Spark 2.4 从 Hive 2(Hadoop 2)中导入数据到 Nebula Graph
    • 用 Spark 2.4 从 Hive3(Hadoop 3)中导入数据到 Nebula Graph

说明:Exchange 目前还不支持 Spark 3,编译后运行报错,所以没法验证 Spark 3 环境

还有一些疑问

  • nebula_application.conf 文件的参数 batch 和 rate.limit 应该如何设置?参数如何抉择?
  • Exchange 工具 Hive 数据导入原理(Spark 这块我也是最近现学现用)

6 Exchange 源码 Debug

Spark Debug 部分参考博客:https://dzone.com/articles/how-to-attach-a-debugger-to-apache-spark

通过 Exchange 源码的学习和 Debug 能加深对 Exchange 原理的理解,同时也能发现一些文档描述不清晰的地方,比如 导入 SST 文件Download and Ingest 只有结合源码看才能发现文档描述不清晰逻辑不严谨的问题。

通过源码 Debug 也能发现一些简单的参数配置问题。

Redis性能篇(一)Redis内部的阻塞式操作及应对方法

进入正题:

步骤一:

export SPARK_SUBMIT_OPTS=-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=4000

步骤二:

spark-submit --class com.vesoft.nebula.tools.importer.Exchange --master “local” /xxx/exchange-1.1.0.jar -c /xxx/nebula_application.conf -h
Listening for transport dt_socket at address: 4000

步骤三:IDEA 配置

步骤四:在 IDEA 里面点击 Debug

7 建议与感谢

感谢 vesoft 提供了宇宙性能最强的 Nebula Graph 图数据库,能解决业务中很多实际问题,中途这点痛不算什么(看之前的分享,360 数科他们那个痛才是真痛)。中途遇到的问题都有幸得到社区及时的反馈解答,再次感谢

很期待 Exchange 支持 Nebula Graph 2.0

参考资料

喜欢这篇文章?来来来,给我们的 GitHub 点个 star 表鼓励啦~~ ‍️‍️ [手动跪谢]

交流图数据库技术?交个朋友,Nebula Graph 官方小助手微信:NebulaGraphbot 拉你进交流群~~

推荐阅读

数仓建设中最常用模型–Kimball维度建模详解

除非注明,否则均为醉墨淋漓 | 精品互联网资源原创文章,转载必须以链接形式标明本文链接

本文链接:https://momeis.net/post-2707.html

给TA买糖
共{{data.count}}人
人已赞赏
经验教程

使用 Flux,Helm v3,Linkerd 和 Flagger 渐进式交付 Kubernetes

2021-1-11 14:59:00

经验教程

Linux LVM Logical Volume Management 逻辑卷的管理

2021-1-11 15:45:00

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
有新私信 私信列表
搜索